Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan.
نویسندگان
چکیده
Glycopeptide resistance has been studied in detail in enterococci and staphylococci. In these microorganisms, high-level resistance is achieved by replacing the C-terminal D-alanyl-D-alanine of the nascent peptidoglycan with D-alanyl-D-lactate or D-alanyl-D-serine, thus reducing the affinities of glycopeptides for cell wall targets. Reorganization of the cell wall is directed by the expression of the van gene clusters. The identification of van gene homologs in the genomes of several glycopeptide-producing actinomycetes suggests the involvement of a similar self-resistance mechanism to avoid suicide. This report describes a comprehensive study of self-resistance in Actinoplanes teichomyceticus ATCC 31121, the producer of the clinically relevant glycopeptide teicoplanin. A. teichomyceticus ATCC 31121 showed a MIC of teicoplanin of 25 microg/ml and a MIC of vancomycin of 90 microg/ml during vegetative growth. The vanH, vanA, and vanX genes of A. teichomyceticus were found to be organized in an operon whose transcription was constitutive. Analysis of the UDP-linked peptidoglycan precursors revealed the presence of UDP-glycomuramyl pentadepsipeptide terminating in D-alanyl-D-lactate. No trace of precursors ending in d-alanyl-d-alanine was detected. Thus, the van gene complex was transcribed and expressed in the genetic background of A. teichomyceticus and conferred resistance to vancomycin and teicoplanin through the modification of cell wall biosynthesis. During teicoplanin production (maximum productivity, 70 to 80 microg/ml), the MIC of teicoplanin remained in the range of 25 to 35 microg/ml. Teicoplanin-producing cells were found to be tolerant to high concentrations of exogenously added glycopeptides, which were not bactericidal even at 5,000 microg/ml.
منابع مشابه
Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms.
The mechanism of high-level resistance to vancomycin in enterococci consists of the synthesis of peptidoglycan terminating in D-alanyl-D-lactate instead of the usual D-alanyl-D-alanine. This alternate cell wall biosynthesis pathway is ensured by the collective actions of three enzymes: VanH, VanA, and VanX. The origin of this resistance mechanism is unknown. We have cloned three genes encoding ...
متن کاملOld and New Glycopeptide Antibiotics: Action and Resistance
Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptide...
متن کاملSelf-resistance and cell wall composition in the glycopeptide producer Amycolatopsis balhimycina.
The prevailing resistance mechanism against glycopeptides in Gram-positive pathogens involves reprogramming the biosynthesis of peptidoglycan precursors, resulting in d-alanyl-d-lactate depsipeptide termini. Amycolatopsis balhimycina produces the vancomycin-like glycopeptide balhimycin and therefore has to protect itself from the action of the glycopeptide. We studied the roles of the accessory...
متن کاملChemistry and biology of the ramoplanin family of peptide antibiotics.
The peptide antibiotic ramoplanin factor A2 is a promising clinical candidate for treatment of Gram-positive bacterial infections that are resistant to antibiotics such as glycopeptides, macrolides, and penicillins. Since its discovery in 1984, no clinical or laboratory-generated resistance to this antibiotic has been reported. The mechanism of action of ramoplanin involves sequestration of pep...
متن کاملCharacterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance.
Vancomycin is the front-line therapy for treating problematic infections caused by methicillin-resistant Staphylococcus aureus (MRSA), and the spread of vancomycin resistance is an acute problem. Vancomycin blocks cross-linking between peptidoglycan intermediates by binding to the D-Ala-D-Ala termini of bacterial cell wall precursors, which are the substrate of transglycosylase/transpeptidase. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2007